Electronic and optical properties of strained graphene and other strained 2D materials: a review
نویسندگان
چکیده
منابع مشابه
Interesting Properties of Strained or Defective Graphene
Most people think of graphene as a flat membrane and the quality of physics observation depends on the flatness of it. However defective or strained graphene can present interesting properties, especially to a chemist. For example, generating pores or voids in graphene, oxidizing and disrupting the conjugation, as in the case of nanoporous graphene oxide, can generate a material that is catalyt...
متن کاملEffective Hamiltonian of strained graphene.
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The re...
متن کاملCovalent functionalization of strained graphene.
An enhancement of the chemical activity of graphene is evidenced by first-principles modelling of the chemisorption of hydrogen, fluorine, oxygen and hydroxyl groups on strained graphene. For the case of negative strain or compression, chemisorption of the single hydrogen, fluorine or hydroxyl group is energetically more favourable than those of their pairs on different sublattices. This behavi...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولAnisotropic AC conductivity of strained graphene.
The density of states and the AC conductivity of graphene under uniform strain are calculated using a new Dirac Hamiltonian that takes into account the main three ingredients that change the electronic properties of strained graphene: the real displacement of the Fermi energy, the reciprocal lattice strain and the changes in the overlap of atomic orbitals. Our simple analytical expressions for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reports on Progress in Physics
سال: 2017
ISSN: 0034-4885,1361-6633
DOI: 10.1088/1361-6633/aa74ef